

3.3-5.5V Supply ±16kV ESd Protected 10Mbps, Half-duplex RS485/RS422 Transceiver

FEATURES

➢ 3V∼5.5V power supply, half-duplex

- ESD protection for bus terminals: contact discharge ±16kV
- > Bus fault tolerance and withstand voltage reach $\pm 15V$
- > 1/8-unit-load, allows up to 256 transceivers on the bus
- Driver short-circuit out protection
- Overtemperature protection function
- Low power shutdown function
- Receiver open-circuit failure protection
- Strong anti-noise ability
- Integrated transient voltage suppression function
- Data transmission up to 10Mbps in an electric noise environment

PRODUCT APPEARANCE

Provide Green and Environmentally Friendly Lead-free package

DESCRIPTION

SL65HVD08 is a $3.0V\sim5.5V$ power supply, the contact discharge voltage of A/B is $\pm 16kV$, the fault protected voltage is $\pm 15V$, half-duplex, low power, RS485 Transceiver. SL65HVD08 fully meets the TIA/EIA-485 standard.

SL65HVD08 includes a driver and a receiver, both of which can be enabled and disabled independently. When both are disabled, the driver and receiver outputs are high resistance state. SL65HVD08 has a 1/8-unit-load receiver input impedance, that allows up to 256 transceivers on the bus. The SL65HVD08 allowing error-free data transmission up to 10Mbps.

SL65HVD08 has a working voltage range of 3.0V to 5.5V and has the functions of fail-safe, overtemperature protection, current-limiting protection and overvoltage protection.

PIN CONFIGURATION

Fig 1 pin configuration

PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION
1	RO	Receiver output. When /RE is low, if A-B≥200 mV, then RO=high. If A-B≤-200 mV, then RO=low.
2	/RE	Receiver output enable. Drive /RE low to enable RO; RO is high impedance when /RE is high. Drive /RE high and DE low to enter low-power shutdown mode.
3	DE	Driver output enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive /RE high and DE low to enter low-power shutdown mode.
4	DI	Driver input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.
5	GND	Ground.
6	А	Non-inverting receiver input and non-inverting driver output.
7	В	Inverting receiver input and inverting driver output.
8	VCC	Power supply.

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	VCC	+7	V
CTR Port	/RE, DE, DI	-0.3~VCC+0.5	V
Driver Output Voltage	A, B	-15~15	V
Receiver Output Voltage	RO	-0.3~VCC+0.5	V
Operating Temperature Range	Та	-40~85	°C
Storage Temperature Range	T _{stg}	-60~150	°C
Lead Temperature		300	°C
	SOP8	470	mW
Continuous Power Dissipation	MSOP8	830	mW
Dissipation	DIP8	700	mW

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

DRIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Differential driver output (no load)	V _{OD1}		3.0		5.5	V
Differential driver	V _{OD2}	<u>Fig 2</u> , RL=54Ω, VCC=3.3V		2	VCC	v
output	002	<u>Fig 2</u> , RL=54Ω, VCC=5.0V		3.5	VCC	
Change in magnitude of differential output voltage (NOTE1)	ΔV_{OD}	<u>Fig 2</u> , RL=54Ω			0.2	V
Driver common-mode Output Voltage	V _{OC}	<u>Fig 2</u> , RL=54Ω			3	V
Change in magnitude of common-mode voltage (NOTE1)	ΔV_{OC}	<u>Fig 2</u> , RL=54Ω			0.2	V
High-level input voltage	V _{IH}	DE, DI, /RE	2.0			V
Low-level input voltage	V_{IL}	DE, DI, /RE			0.8	V
Logic input current	I _{IN1}	DE, DI, /RE	-2		2	μΑ
Short-circuit output current, short to HIGH	I _{OSD1}	Short to 0V~12V			250	mA
Short-circuit output current, short to LOW	I _{OSD2}	Short to-7V~0V	-250			mA
Thermal-shutdown threshold temperature				140		°C
Thermal-shutdown hysteresis temperature				20		°C

(Unless otherwise stated, Temp=T_{MIN} T_{MAX} , Temp=25°C, VCC=5V).

NOTE1: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

RECEIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
	Ţ	DE=0V, VCC=0 or 3.3/5V, V _{IN} =12V			125	μΑ
Input Current(A, B)	I _{IN2}	DE=0V, VCC=0 or 3.3/5V, VIN=-7V	-100			μΑ
Positive-going input threshold voltage	V_{IT^+}	-7V≤V _{CM} ≤12V			+200	mV
Negative-going input threshold voltage	V _{IT-}	-7V≤V _{CM} ≤12V	-200			mV
Receiver input hysteresis voltage	V_{hys}	-7V≤V _{CM} ≤12V	10	30		mV
HIGH-level output voltage	V _{OH}	I _{OUT} =-4mA, V _{ID} =+200mV	VCC-1.5			V
LOW-level output voltage	V _{OL}	I _{OUT} =+4mA, V _{ID} =-200mV			0.4	V
Three-state input leakage current	I _{OZR}	0.4V <v<sub>0<2.4V</v<sub>			±1	μΑ
Receiver input resistance	$R_{\rm IN}$	-7V≤V _{CM} ≤12V	96			kΩ
Receiver output short-circuit current	I _{OSR}	0 V≤V₀≤VCC	± 8		±60	mA

(Unless otherwise stated, Temp=T_{MIN}~T_{MAX}, Temp=25°C).

SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
	т	/RE=DE=0V, VCC=3.3V		430	650	μΑ
Secondar Communit	I _{CC1}	/RE=DE=0V, VCC=5V		470	750	μΑ
Supply Current	т	/RE=DE=VCC, VCC=3.3V		450	650	μΑ
	I _{CC2}	/RE=DE=VCC, VCC=5V		510	750	μΑ

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		/RE=VCC,		0.4	10	
		DE=0V, VCC=3.3V		0.4	10	μA
Shutdown current	I _{SHDN}	/RE=VCC,				
		DE=0V,		0.1	10	μΑ
		VCC=5V				

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Driver Differential Output Delay	t _{DD}	$R_L=60\Omega$,		12	32	ns
Driver Differential Output Transition Time	t _{TD}	C _L =100pF, <u>Fig 3</u> & <u>Fig 4</u>		15	28	ns
Driver Propagation Delay, Low-to-High Level	t _{DZH}		18		40	ns
Driver Propagation Delay, High-to-Low Level	t _{DZL}	$R_L=27\Omega$ <u>Fig 3 & Fig 4</u>	18		40	ns
t _{PLH} - t _{PHL} Driver Propagation-Delay Skew (Note 2)	t _{PDS}			2	2.5	ns
Driver-Output Enable Time to High Level	t _{PZH}	$R_L=110\Omega$,			55	ns
Driver-Output Enable Time to Low Level	t _{PZL}	<u>Fig 5</u> & <u>Fig 6</u>			55	ns
Driver-Output Disable Time from Low Level	t _{PLZ}	R _L =110Ω,			85	ns
Driver-Output Disable Time from High Level	t _{PHZ}	<u>Fig 5</u> & <u>Fig 6</u>			85	ns
Driver-Output Enable Time from Shutdown to Low Level	t _{DSH}	R _L =110Ω, <u>Fig 5</u> & <u>Fig 6</u>		400	1000	ns

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Driver-Output Enable Time from		R _L =110Ω,		400	1000	
Shutdown to High	t _{DSL}	<u>Fig 5</u> & <u>Fig 6</u>		400	1000	ns
Level						

RECEIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Receiver Propagation Delay (low to high)	t _{RPLH}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		70		ns
Receiver Propagation Delay (high to low)	t _{RPHL}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		70		ns
t _{RPLH} - t _{RPHL}	t _{RPDS}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		5		ns
Receiver Enable to Output Low	t _{RPZL}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		15		ns
Receiver Enable to Output High	t _{RPZH}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		15		ns
Receiver Disable Time from Low	t _{RPLZ}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		25	55	ns
Receiver Disable Time from High	t _{rphz}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		25	55	ns
Receiver Enable from shutdown to Output High	t _{RPSH}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		250	1500	ns
Receiver Enable from Shutdown to Output Low	t _{RPSL}	C _L =15pF <u>Fig 7</u> & <u>Fig 8</u>		250	1500	ns
Time to Shutdown	t _{SHDN}	NOTE2	80		300	ns

NOTE2: The device is put into shutdown by bringing RE high and DE low. If the enable inputs are in this state for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600ns, the device is guaranteed to have entered shutdown.

Slkor

FUNCTION TABLES

	T	RANSMI	ITING	
СТ	R	INPUTS	OUT	PUTS
/RE	DE	DI	А	В
Х	1	1	Н	L
Х	1	0	L	Н
0	0	Х	Z	Z
1	0	Х	Z(shut	down)
X	: Don't c	are; Z: high	impedanc	ce.

TEST CIRCUIT

	RI	ECEIVING	
C	ΓR	INPUTS	OUTPUTS
/RE	DE	A-B	RO
0	Х	≥200mV	Н
0	Х	≤-200mV	L
0	Х	Open/shorted	Н
1	Х	Х	Z
X	: Don't care	e; Z: high imped	ance.

ADDITIONAL DESCRIPTION

1 Sketch

SL65HVD08 is a half-duplex high-speed transceiver with $3.0 \sim 5.5$ V wide power supply, ± 16 kV contact discharge capacity and bus DC withstand voltage of more than ± 15 V, used for RS-485/RS-422 communication, including a driver and a receiver. It has the function of fail-safe, overvoltage protection, over-current protection and over temperature protection. The SL65HVD08 allows error-free data transmission up to 10Mbps.

2 Connecting 256 Transceivers on one Bus

The standard RS-485 receiver input impedance is $12k\Omega$ (1 unit load), the standard driver can drive up to 32 unit loads. Receiver SL65HVD08 transceiver has a 1/8 unit load receiver input impedance (96k Ω), allowing up to 256 transceivers to be connected in parallel on one bus. These devices can be any combination, or in combination with other RS-485 transceiver combination, as long as the total load does not load more than 32 units, can be connected on the same bus.

3 Drive Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. First, over-current protection, fast short circuit protection in the mode voltage range (refer to typical operating characteristics). Second, when the temperature of the tube core exceeds 140° C, the output of the driver is forced into the high resistance state.

4 Typical Application

4.1 Bus Networking: SL65HVD08 RS485 transceiver is designed for bidirectional data communication on multi-point bus transmission line. Fig 9 shows a typical network application circuit. These devices can also be used as linear repeaters with cables longer than 4,000 feet. In order to reduce the reflection, terminal matching should be carried out at both ends of the transmission line with its characteristic impedance, and the length of branch lines outside the main line should be as short as possible.

Fig 9 Bus type RS485 half-duplex communication network

4.2 Hand in hand Networking: Also known as daisy chain topology, is the standard and specification of RS485 bus wiring, and is the RS485 bus topology recommended by TIA and other organizations. The

wiring mode is that the main control equipment and a plurality of slave control equipment form a hand-held connection mode, as shown in Fig 10, and the hand-held mode is no branches. This wiring mode has the advantages of small signal reflection and high communication success rate.

Fig 10 Hand in hand RS485 half-duplex communication network

4.3 Bus port protection: in severe environment, RS485 communication port is usually provided with electrostatic protection, lightning surge protection and other additional protection, and even the plan to prevent 380V market electricity access is needed to avoid the damage of intelligent instrument and industrial control host. Fig 11 shows three common RS485 bus port protection schemes. The first is the scheme of three-level protection by connecting TVS devices in parallel with A, B port to the protective ground, TVS devices in parallel with A, B port, thermistor in series with A, B port, gas discharge tube in parallel to the protective ground; the second is the scheme of three-level protection by connecting TVS in parallel with A, B port to the ground, thermistor in series with A, B port, and varistor in parallel with A, B port; the third is the scheme of three-level protection by connecting TVS between A & B, A or B port connecting thermistor.

SOP8 DIMENSIONS

MSOP8/8µMAX/VSSOP8 DIMENSIONS

nbol	Min./mm	Typ./mm	Max./mm
	2.90	3.0	3.10
.1	0.28		0.35
		0.65 TYP	1
3		0.375 TYP	
В	2.90	3.0	3.10
1	4.70		5.10
B2	0.45		0.75
С	0.75		0.95
C1			1.10
C2		0.328 TYP	
C3		0.152	
C4	0.15		0.23
Н	0.00		0.09
θ		12° TYP	1
C1			

DIP8 DIMENSIONS

Symbol	Min./mm	Typ./mm	Max./mm
А	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2	2.54TYP		
A3	1.525TYP		
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60

REFLOW SOLDERING

Parameter	Lead-free soldering conditions	
Ave ramp up rate $(T_L \text{ to } T_P)$	3°C/second max	
Preheat time ts	60-120 seconds	
(T _{smin} =150°C to T _{smax} =200°C)		
Melting time $t_L(T_L=217^{\circ}C)$	60-150 seconds	
Peak temp T _P	260-265°C	
5° C below peak temperature t _P	30 seconds	
Ave cooling rate $(T_P \text{ to } T_L)$	6°C/second max	
Normal temperature 25°C to peak temperature	8 minutes max	
T _P time		

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SL65HVD08DR	SOP8	Tape and reel
SL65HVD08DGK	MSOP8/VSSOP8/8µMAX Tape and reel	
SL65HVD08P	DIP8	Tube

REVISION HISTORY

Version number	Data sheet status	Revision date
V1.0	Initial version.	August 2018
V1.1~V1.4	Adjusted format.	February 2018 to May 2018
V1.5	Added ESD protection related content.	June 2018
V1.6	Adjusted format.	August 2018
V1.7	Updated test circuit; Added tape and reel information; Updated ordering information; Added reflow soldering; Added revision history.	February 2023